Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning
نویسندگان
چکیده
منابع مشابه
Generative Adversarial Imitation Learning
Consider learning a policy from example expert behavior, without interaction with the expert or access to reinforcement signal. One approach is to recover the expert’s cost function with inverse reinforcement learning, then extract a policy from that cost function with reinforcement learning. This approach is indirect and can be slow. We propose a new general framework for directly extracting a...
متن کاملMultimodal Storytelling via Generative Adversarial Imitation Learning
Deriving event storylines is an effective summarization method to succinctly organize extensive information, which can significantly alleviate the pain of information overload. The critical challenge is the lack of widely recognized definition of storyline metric. Prior studies have developed various approaches based on different assumptions about users’ interests. These works can extract inter...
متن کاملMulti-agent Generative Adversarial Imitation Learning
We propose a new framework for multi-agent imitation learning for general Markov games, where we build upon a generalized notion of inverse reinforcement learning. We introduce a practical multi-agent actor-critic algorithm with good empirical performance. Our method can be used to imitate complex behaviors in highdimensional environments with multiple cooperative or competitive agents. 1 MARKO...
متن کاملLearning a Visual State Representation for Generative Adversarial Imitation Learning
Imitation learning is a branch of reinforcement learning that aims to train an agent to imitate an expert’s behaviour, with no explicit reward signal or knowledge of the world. Generative Adversarial Imitation Learning (GAIL) is a recent model that performs this very well, in a data-efficient manner. However, it has only been used with low-level, low-dimensional state information, with few resu...
متن کاملLearning human behaviors from motion capture by adversarial imitation
Rapid progress in deep reinforcement learning has made it increasingly feasible to train controllers for high-dimensional humanoid bodies. However, methods that use pure reinforcement learning with simple reward functions tend to produce non-humanlike and overly stereotyped movement behaviors. In this work, we extend generative adversarial imitation learning to enable training of generic neural...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2020
ISSN: 1424-8220
DOI: 10.3390/s20185034